Should There Be Vertical Choice in Health Insurance Markets?

Victoria Marone
Northwestern University

Adrienne Sabety

Harvard University

July 2020

Vertical choice

$=$ Choice over financially vertically differentiated plans

BRONYA	ज1－1／	COIT	Pッチッパめ
60%	10%	80%	$9 \times 1 \%$
approximate coverage	approximate coverage	approximate coverage	approximate coverage
Lowest Premium	2nd Lowest Premium	Higher Premium	Highest Premium
High Deductible			No Deductible

Is offering vertical choice efficient?

- Adverse selection a familiar problem for competitive ins. markets
- Resulting in too little insurance
- Regulation can easily fix this by mandating full insurance
- Resulting in too much insurance
- Optimal insurance trades off risk protection (\uparrow) and moral hazard (\downarrow)
- Could mandate an intermediate level of coverage for everyone
\rightarrow But consumers are heterogenous... could do better?

Research Question: Should planner offer multiple coverage levels?
i.e. vertical choice

This paper

- Develop a generalized model of a health insurance market
- Consumers demand both health insurance and healthcare utilization
- Supply of contracts vertically differentiated by financial coverage level
- Use model to qualify and quantify constrained efficiency
- Each consumer's efficient coverage level determined by tradeoff between risk protection (\Uparrow) and moral hazard (\Downarrow)
- But cannot observe consumer type; consumers self-select
- Characterize constrained efficient allocation

Offer choice only if higher WTP consumers should have higher coverage

- Theoretically ambiguous
- Investigate empirically in one population

Main empirical findings

- Substantial heterogeneity in efficient coverage level across households
- But efficient coverage level not increasing in willingness to pay

Key Conclusions

- Vertical choice should not be offered in this population
- Optimal single coverage level increases welfare by $\$ 330$ per household relative to a status quo with vertical choice
- And leads to a more even distribution of $\underbrace{\text { health spending }}$
$E($ Out-of-pocket $)+$ Premium

Two-contract example

Market for high contract, outside option is low contract

- Consider demand (D) and marginal cost $(M C)$ curves for two populations
- $S S=D-M C$: Not everyone has same optimal contract
- What is optimal marginal premium p ?
(a) Population A

$q \equiv$ Pct. of consumers
(b) Population B

$S S \equiv$ Social surplus

Model demand for healthcare and health insurance

- Consumers face distribution over potential health states

1 Choose an insurance contract \rightarrow Maximizing expected utility
2 Health state is realized
3 Choose healthcare utilization \rightarrow Trading off benefit and out-of-pocket cost

- Willingness to pay $=$ Expected value + Risk protection

$$
=\mathrm{EV}(\text { benefit })+\underset{\llcorner\text { "Transfer" }}{\mathrm{EV}(\$)}+\text { Risk protection }
$$

- Cost $=\mathrm{EV}(\$)+\mathrm{EV}($ Moral hazard $\$)$
- Social surplus $=$ Willingness to pay - Cost
$=$ Risk protection - Social cost of moral hazard

Two-contract example, from fundamentals

(a) Population A

(b) Population B

$D \equiv$ Willingness to pay $\quad q \equiv$ Pct. of consumers $\quad S S \equiv$ Social surplus

Empirical setting

- Data from the Oregon Educators Benefits Board
- All public school employees in Oregon
- $\sim 45,000$ households ($\sim 115,000$ individuals)
- Between 2008 and 2013
- Individual-level panel dataset
- Health insurance plan choices, choice sets, and demographics
- Health insurance claims data
\Rightarrow Key points:
- Existence of vertical choice
- Plausibly exogenous variation in premiums and choice sets

Empirical model

- Parameterize model of demand for healthcare and health insurance
- Consumers have 3-dimensional type θ :
- $F=$ Distribution over potential health states
- $\psi=$ Risk aversion parameter
- $\omega=$ Moral hazard parameter
- Incorporate specifics of empirical setting
- Consumers are households made up of individuals
- Multiple insurers
- Repeated choices

亶 Estimate model . . .

- Recover distribution of types $\theta=\{F, \psi, \omega\}$ in population

Plans to consider

Out-of-pocket cost functions

Willingness to pay

Relative to Catastrophic \rightarrow the "low" contract

Breakdown of willingness to pay

For Gold plan

Social surplus

Relative to Catastrophic

Welfare under alternative policies

Policy		Surplus per HH^{\dagger}	\% Enrollment					
		Full	Gold	Silver	Bronze	Ctstr.		
(1)	Regulated pricing with community rating		\$1,802	-	1.00	-	-	-
(2)	Competitive pricing with community rating	\$0	-	-	-	-	1.00	
(3)	Subsidies to support vertical choice	\$1,472	0.01	0.07	0.63	0.28	0.01	

${ }^{\dagger}$ Relative to everyone in Catastrophic
\Rightarrow Putting everyone in Gold (1) generates additional $\$ 330$ in welfare per household relative to status quo vertical choice (3)

Distribution of health spending by WTP

Health spending $=$ Premiums + expected out-of-pocket cost

Thank you!

Comments welcome: marone@utexas.edu

